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Abstract
Cellular signaling regulates various cellular functions via protein phosphorylation. 
Phosphoproteomic data potentially include information for a global regulatory net-
work from signaling to cellular functions, but a procedure to reconstruct this network 
using such data has yet to be established. In this paper, we provide a procedure to 
reconstruct a global regulatory network from signaling to cellular functions from 
phosphoproteomic data by integrating prior knowledge of cellular functions and in-
ference of the kinase–substrate relationships (KSRs). We used phosphoproteomic 
data from insulin‐stimulated Fao hepatoma cells and identified protein phosphoryla-
tion regulated by insulin specifically over‐represented in cellular functions in the 
KEGG database. We inferred kinases for protein phosphorylation by KSRs, and con-
nected the kinases in the insulin signaling layer to the phosphorylated proteins in the 
cellular functions, revealing that the insulin signal is selectively transmitted via the 
Pi3k‐Akt and Erk signaling pathways to cellular adhesions and RNA maturation, 
respectively. Thus, we provide a method to reconstruct global regulatory network 
from signaling to cellular functions based on phosphoproteomic data.
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1 |  INTRODUCTION

Protein phosphorylation plays a pivotal role in signaling‐de-
pendent regulation of various cellular functions. The recent 
development of proteomic technologies has enabled us to 
quantify abundance of protein phosphorylation comprehen-
sively (Humphrey, James, & Mann, 2015; Olsen et al., 2006). 
Phosphoproteomic data potentially include information about 
global regulatory networks from signaling to cellular func-
tions via protein phosphorylation. Prior knowledge of cellular 
functions in databases such as KEGG which is a manually cu-
rated database for biological pathway and functions of genes 
(Kanehisa, Furumichi, Tanabe, Sato, & Morishima, 2017; 
Kanehisa, Goto, Sato, Furumichi, & Tanabe, 2012), reactome 
which is a manually curated database for biological pathways 
and processes of signaling and metabolic molecules (Croft et 
al., 2014), and Gene Ontology (GO) which is a set of functional 
terms related to biological process and localization of proteins 
represented as directed acyclic graph (Ashburner et al., 2000) 
has been used to identify specific cellular functions of protein 
phosphorylation from phosphoproteomic data. Several tools 
inferring kinase–substrate relationship (KSR) based on sim-
ilarity of recognition motifs have also been developed, such 
as NetPhorest (Miller et al., 2008), KinomeXplorer (Horn et 
al., 2014), KinasePhos (Huang, Lee, Tzeng, & Horng, 2005) 
and iGPS (Song et al., 2012), and using such methods, associ-
ation of kinases with protein phosphorylation can be inferred 
from phosphoproteomic data (Emdal et al., 2015; Giansanti 
et al., 2015; Kanshin, Kubiniok, Thattikota, D’Amours, & 
Thibault, 2015; Patella et al., 2015; Sacco et al., 2016; Yugi 
et al., 2014). Biological interpretation of phosphoproteomic 
data based on prior knowledge has addressed specific cellular 
functions regulated by protein phosphorylation, but not the 
signaling‐dependent regulation of such cellular functions. 
KSR addresses the regulation of substrates by kinases in the 
signaling pathway, but not regulation of the cellular functions. 
Integrating these two approaches may enable the reconstruc-
tion of the global regulatory network from signaling to cellu-
lar functions based on phosphoproteomic data, but a method 
for this has not thus far been established.

Insulin regulates diverse cellular functions through 
phosphorylation of substrate proteins by protein kinases in 
the insulin signaling pathway, including Akt and extracellu-
lar signal‐regulated kinase (Erk) (Lizcano & Alessi, 2002; 
Saltiel & Kahn, 2001); insulin‐regulated cellular functions 
include cell adhesion, cytoskeletal organization, RNA trans-
port and RNA splicing (Hartmann et al., 2009; Reiss et al., 
2001; Tsakiridis et al., 1999; Wolf et al., 2013). It has been 
reported that mutation of substrate proteins for Akt and in-
hibition of phosphoinositide 3‐kinase (Pi3k) reduce actin 
reorganization and intracellular adhesion in response to in-
sulin in cancer cells (Reiss et al., 2001; Tsakiridis et al., 
1999; Wolf et al., 2013). Erk, a member of insulin signaling, 

has also been reported to regulate multiple alternative splic-
ing factors, as well as playing a role in transcriptional regu-
lation (Al‐Ayoubi, Zheng, Liu, Bai, & Eblen, 2012; Boulton 
et al., 1991; Eblen, 2018; Matter, Herrlich, & König, 2002). 
Thus, insulin regulates various cellular functions by phos-
phorylating multiple substrate proteins via various protein 
kinases. However, the global regulatory network of insulin 
action via protein phosphorylation has not thus far been 
elucidated (Buescher et al., 2012; Chiappino‐Pepe, Pandey, 
Ataman, & Hatzimanikatis, 2017; Hatzimanikatis & Saez‐
Rodriguez, 2015; Hyduke, Lewis, & Palsson, 2013; Joyce & 
Palsson, 2006; Palsson & Zengler, 2010). Phosphoproteomic 
studies of insulin signaling have been performed with 
Drosophila cells (Friedman et al., 2011; Vinayagam et al., 
2016), 3T3‐L1 mouse adipocytes (Humphrey et al., 2013), 
mouse hepatoma cells (Monetti, Nagaraj, Sharma, & Mann, 
2011), mouse brown preadipocytes (Krüger et al., 2008), 
rat primary hepatocytes (Zhang, Zhang, & Yu, 2017), rat 
Fao hepatoma cells (Yugi et al., 2014) and mouse hepa-
toma (Humphrey, Azimifar, & Mann, 2015). Among these 
phosphoproteomic studies, the cellular functions of insu-
lin‐dependent protein phosphorylation have been estimated 
using databases of prior knowledge such as GO (Friedman 
et al., 2011; Humphrey, Azimifar, et al., 2015; Vinayagam 
et al., 2016; Zhang et al., 2017), whereas insulin‐dependent 
regulatory networks of protein phosphorylation by kinases 
have been estimated using KSR inference (Humphrey et al., 
2013; Miller et al., 2008). However, none of these studies 
integrated both prior knowledge of cellular functions from 
the databases and KSR inference, so the global regulatory 
network from insulin signaling to cellular functions has not 
thus far been reconstructed.

This study integrates prior knowledge of cellular func-
tions from the above‐mentioned databases and KSR in-
ference to provide a procedure to reconstruct the global 
regulatory network from signal to cellular function based 
on phosphoproteomic data. First, we identified the cellu-
lar functions of protein phosphorylation from phosphopro-
teomic data by over‐representation analysis using the 
KEGG database. Next, we inferred the protein kinases 
regulating protein phosphorylation in the cellular functions 
by KSR using NetPhorest, along with the selective use of 
kinases for each cellular function. Finally, we mapped the 
inferred protein kinases in the insulin signaling pathway 
in the KEGG database, by connecting the protein kinases 
in the signaling pathway to the protein phosphorylation 
in the cellular functions layer and reconstructing global 
regulatory network from insulin signaling to the cellular 
functions via protein phosphorylation. The global regula-
tory network revealed that the insulin signal is selectively 
transmitted via the Pi3k‐Akt pathway and the Erk pathway 
to cellular adhesions and RNA maturation such as RNA 
transport or splicing, respectively.
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2 |  RESULTS

2.1 | Characterization of the 
phosphoproteomic data
Previously, we obtained phosphoproteomic data of rat Fao 
hepatoma cells in acute insulin action (<60 min; Yugi et al., 
2014). We used the 199 phosphopeptides from the 49 meta-
bolic enzymes in our previous work; the remaining phospho-
peptides have yet to be analyzed. For this analysis, we use all 
7,929 phosphopeptides from 3,468 proteins; the phosphopep-
tides included 6,989 phosphoserine (pSer), 1,421 phospho-
threonine (pThr) and 79 phosphotyrosine (pTyr) (Figure 1a). 
Singly phosphorylated peptides represented 93% of the 7,929 
phosphopeptides (Figure 1b). The distribution of phospho-
rylation sites by amino acid was consistent with the previous 
studies (Humphrey et al., 2013; Humphrey, Azimifar, et al., 
2015; Olsen et al., 2006, 2010).

2.2 | Identification of cellular functions 
regulated by insulin
To identify the cellular functions regulated by insulin via pro-
tein phosphorylation, we identified quantitatively changed 
phosphopeptides from the phosphoproteomic data. We iden-
tified 3,288 quantitatively changed phosphopeptides ex-
hibiting a change in phosphorylation intensity greater than 
a 1.5‐fold increase or less than a 0.67‐fold decrease at one 
or more time points in response to insulin stimulation; these 
sites were present on 1,947 proteins. Hereafter, we define a 

protein with at least one quantitatively changed phosphopep-
tide as an insulin‐responsive phosphoprotein (IRpP).

To determine cellular functions related to the 1,947 IRpPs, 
we performed pathway over‐representation analysis using 
KEGG pathways (that is, those pathways included in the 
KEGG database). We extracted pathways related to various 
cellular functions from KEGG (hereafter cellular functional 
pathways), except for those related to signaling and those that 
function specifically in tissues other than liver (see Section 
4). The analysis with KEGG pathways related to signaling 
was performed in our previous study (Kawata et al., 2018). 
The pathways that function specifically in tissues other than 
liver were excluded because the phosphoproteomic data are 
from rat Fao hepatoma cells, which are a liver cell line. IRpPs 
were significantly over‐represented in 11 out of 128 cellular 
functional pathways, including those regulating cell adhesion 
(Figure 1c), such as Tight junction (rno04530) and Gap junc-
tion (rno04540), and those regulating RNA maturation, such 
as RNA transport (rno03013) and Spliceosome (rno03040). 
We extracted the 11 pathways in which IRpPs were signifi-
cantly over‐represented and defined them as the cellular 
functional layer (Table 1, Supporting Information Table S1).

2.3 | Inference of protein kinases for 
protein phosphorylation in the cellular 
functional pathways
To infer the specific protein kinases regulating the IRpPs 
in the cellular functional pathways, we inferred protein ki-
nases recognizing quantitatively changed phosphopeptides as 

F I G U R E  1  Characterization of 
phosphoproteomic data. Distribution of 
phosphorylation sites by (a) amino acid 
residues and (b) number of phosphorylated 
sites per peptide. Numbers and parentheses 
indicate the number of phosphorylation 
sites or phosphopeptides, and percentage 
relative to the total phosphorylation sites or 
phosphopeptides, respectively. (c) Number 
of proteins in the KEGG cellular functional 
pathways. The light gray bars indicate the 
total number of proteins, and the dark gray 
bars indicate the number of IRpP contained 
in each signaling pathway
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substrates in the cellular functional pathways, using the KSR 
prediction tool NetPhorest (Horn et al., 2014; Miller et al., 
2008). The kinase classifier with the largest posterior prob-
ability value for each phosphopeptide was considered the 
responsible protein kinase. We inferred kinase–substrate re-
lationships between a total of 26 responsible protein kinases 
and 489 out of 492 quantitatively changed phosphopeptides 
from the 216 IRpPs in the 11 cellular functional pathways 
(Supporting Information Table S2).

2.4 | Selective use of protein kinases 
according to cellular functions
To examine the selective use of the protein kinases regu-
lating specific cellular functions, we calculated the occur-
rence rate of the responsible kinases of the phosphopeptides 
of IRpPs in each cellular functional pathway (Supporting 
Information Table S3). We performed cluster analysis using 
the occurrence rates, which resulted in two clusters (Figure 
2a): Cluster 1 included pathways regulating cell adhesion 

and the cytoskeleton, such as Tight junction (rno04530), 
Gap junction (rno04540) and Regulation of actin cytoskel-
eton (rno4810) (Figure 2a, blue); Cluster 2 included path-
ways regulating RNA maturation, such as RNA transport 
(rno03013) and Spliceosome (rno03040) (Figure 2a, red).

To investigate the protein kinase regulating each cel-
lular function, we compared the motif logos of amino acid 
sequences (Colaert, Helsens, Martens, Vandekerckhove, & 
Gevaert, 2009) of the quantitatively changed phosphopep-
tides of IRpPs in each cellular functional pathway (Figure 
2b). For many of the pathways in Cluster 1, arginine residue 
(R) at the −3 position was emphasized, whereas proline resi-
due (P) at the +1 position was emphasized for many pathways 
in Cluster 2. R at the −3 position and P at the +1 position 
were known as target sequences of basophilic kinases such 
as Akt and proline‐directed kinases such as Erk, respectively. 
The results of cluster analysis and motif logos indicate that 
cell adhesion and the cytoskeleton were selectively regulated 
mainly by Akt, whereas RNA maturation was selectively reg-
ulated mainly by Erk.

To confirm these findings, the representation of the 
amino acid residues at each position of the phosphopeptides 
(Workman et al., 2005) included in each cluster was tested 
statistically (Figure 2c). In phosphopeptides of IRpPs on the 
pathways in the cellular functional layer, P at the +1 position 
and R at the −3 position were significantly over‐represented 
(p < 0.05) in comparison with the amino acid composition 
of rat proteins, indicating insulin regulates cellular functions 
via basophilic kinases such as Akt and proline‐directed ki-
nases such as Erk. In the phosphopeptides in Cluster 1, only 
a valine residue (V) at the +1 position was over‐represented 
and P at the +1 position was significantly under‐represented 
in comparison with all phosphopeptides in the phosphopro-
teomic data; contrary to the expectations, R at the −3 position 
was not significantly over‐represented. For the phosphopep-
tides in Cluster 2, P at the +1 position was significantly 
over‐represented. These results suggest selective regulation 
of cellular functions by two distinct type of protein kinases: 
Akt regulates both of the pathways in Cluster 1 (such as cell 
adhesion and the cytoskeleton) and those in Cluster 2 (such 
as RNA maturation), whereas Erk regulates the pathways in 
Cluster 2 specifically.

T A B L E  1  Cellular functional pathways in which quantitatively 
changed phosphopeptides were over‐represented

Pathway name Odds ratio p value FDR

Tight junction 4.11 2.12 × 10−9 2.41 × 10−7

Spliceosome 3.40 7.64 × 10−7 2.85 × 10−5

Longevity regulat-
ing pathway

3.24 7.61 × 10−5 1.16 × 10−3

RNA transport 2.59 7.17 × 10−5 1.16 × 10−3

Longevity regulat-
ing pathway—mul-
tiple species

3.73 1.30 × 10−4 1.77 × 10−3

Adherens junction 3.16 5.45 × 10−4 4.92 × 10−3

Focal adhesion 2.17 5.07 × 10−4 4.92 × 10−3

Apoptosis 2.11 4.43 × 10−3 3.15 × 10−2

Phosphatidylinositol 
signaling system

2.30 6.94 × 10−3 4.72 × 10−2

Gap junction 2.33 8.20 × 10−3 5.33 × 10−2

Regulation of actin 
cytoskeleton

1.74 1.19 × 10−2 7.40 × 10−2

F I G U R E  2  Protein kinase selectivity for protein phosphorylation in the cellular functional pathways. (a) Clustering of cellular functional 
pathways by occurrence rates for each kinase class. Green indicates the larger occurrence rate of the kinase class. (b) Motif logos of amino acid 
sequences of phosphopeptides in each of the indicated pathways. The height of each letter at each position is scaled relative to the information 
content, reflecting the frequency of the corresponding amino acid. Blue pathway names correspond to those in Cluster 1; red names correspond to 
those in Cluster 2. The number in parentheses attached to each pathway name represents the number of quantitatively changed peptides included 
in the pathway. Note that statistical differences of frequencies from any reference sequences are not considered for these motif logos. (c) Statistical 
amino acid motifs for phosphopeptides of IRpPs included in the cellular functional layer (left), Cluster 1 (middle) and Cluster 2 (right) are shown 
as logo plots. The characters above and below each horizontal line indicate amino acids showing significant over‐representation and under‐
representation (p < 0.05), respectively. The height of the letter representing an amino acid at each position reflects the difference in the frequency of 
its occurrence in the sets of phosphopeptides and reference proteins
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2.5 | Reconstruction of global regulatory 
network from signaling to the cellular functions
Finally, we reconstructed the global regulatory network 
from signaling to the cellular functional layer via protein 
phosphorylation by connecting the inferred responsible 
kinases in the insulin signaling pathway to IRpPs in the 
cellular functional layer. As the insulin signaling path-
way, we used insulin signaling pathway (rno04910) in the 
KEGG database (Figure 3a). Among the 61 molecules on 
the signaling pathway, 12 are registered as protein kinases 
in NetPhorest. Among the 26 kinase groups inferred in 
Figure 2a, Akt in the PKB_group, Erk1/2 in the MAPK3_
MAPK1_MAPK7_NLK_group, Pka in the PKA_group, 
Pkc in the PKC_group, Mek1/2 in the MAP2K_group and 
Gsk3β in the GSK3_group were included in the insulin 
signaling pathway (Figure 3a, red). Mek1/2 was the only 
kinase in MAP2K_group involved in insulin signaling path-
way. Given that Mek1/2 is a specific kinase for Erk family 
(Pearson et al., 2001), other kinases in the MAP2K_group 
not involved in insulin signaling pathway, rather than 
Mek1/2, may be the responsible kinase for the IRpPs regu-
lated by MAP2K_group.

We connected the protein kinases in the insulin signal-
ing pathway to the IRpPs in the cellular functional layer, re-
sulting in a reconstructed global regulatory network (Figure 
3b). Among the 489 phosphopeptides of IRpPs in the cellular 
functional layer for which responsible kinases were inferred, 
193 phosphopeptides of IRpPs were connected to the signal-
ing pathway via the kinases (Figure 3b).

To examine the functional selectivity of the protein ki-
nases, we counted the number of phosphopeptides of IRpPs 
in each cluster connected to the protein kinases (Table 2). Of 
the 193 phosphopeptides of IRpPs in the cellular functional 
layer, 122 peptides (63.2%) and 93 peptides (48.2%) were 
included in Clusters 1 and 2, respectively; 22 phosphopep-
tides (11.4%) were included in both clusters. Kinases in the 
Pi3k‐Akt signaling pathway such as Pka, Pkc and Akt were 
connected to more phosphopeptides in Cluster 1 than Cluster 
2, whereas the kinases in the Erk signaling pathway—such as 
Mek1/2 and Erk1/2—were connected to more phosphopep-
tides in Cluster 2 (Figure 3c). This indicates that the Pik3‐
Akt and Erk signaling pathways selectively regulate different 
cellular functions via protein phosphorylation; the former 
mainly regulates cell adhesion such as the adherens junction, 

and the latter mainly regulates RNA maturation such as RNA 
splicing and RNA transport.

3 |  DISCUSSION

We analyzed the phosphoproteomic data of insulin‐stimu-
lated Fao hepatoma cells by integrating prior knowledge of 
cellular functions and KSR inference and reconstructed a 
global regulatory network from signaling to cellular func-
tion. This reconstructed network of insulin action revealed 
that insulin signals are selectively transmitted via the Pi3k‐
Akt and Erk signaling pathways to cellular adhesions and 
RNA maturation, respectively. This result is consistent with 
the earlier finding that Akt and Erk play important roles in 
insulin signaling pathway in adipocytes using phosphopro-
teomic data (Humphrey et al., 2013). Blood insulin showed 
a transient high concentration during the fed state (induced 
insulin secretion), whereas a sustained low concentration 
of blood insulin (basal insulin secretion) was maintained 
during the fasting state (Lindsay et al., 2003; Polonsky, 
Given, & Van Cauter, 1988). We have reported that high 
and low doses of insulin selectively regulate different sign-
aling molecules in the liver (Kubota et al., 2012). We also 
found that high and low doses of insulin regulate different 
cell functions through Erk and Akt, in Fao rat hepatoma 
cells and the rat liver (Kawata et al., 2018). Our finding 
suggests that high and low doses of insulin selectively reg-
ulate cellular adhesions via the Pi3k‐Akt signaling path-
way and RNA maturation via the Erk signaling pathway, 
respectively, in vivo. Elucidating such selective regulation 
in vivo is a subject for future study.

Previous studies combining phosphoproteomic data and 
NetPhorest indicated that Akt has an important role for cel-
lular regulation in response to insulin (Alli Shaik et al., 2016; 
Vinayagam et al., 2016), consistent with this study. These stud-
ies did not focus on the kinase selectivity of the regulated cellu-
lar functions, and this study provides the first evidence for the 
kinase selectivity of cellular functions regulated by insulin. The 
similarities in phosphorylation site consensus motifs shared by 
many protein kinases may also have resulted in inaccurate pre-
dictions of KSR. Although approximately 500 protein kinases 
have been reported in humans (Manning, Whyte, Martinez, 
Hunter, & Sudarsanam, 2002), only approximately 200 kinases 
are registered in NetPhorest, which is the KSR prediction tool 

F I G U R E  3  Reconstruction of the global regulatory network from the insulin signaling pathway to the cellular functional layer. (a) Insulin 
signaling pathway based on KEGG database used as the signaling pathway in the global regulatory network. Red and blue indicate kinases 
connected to the phosphopeptides of the IRpPs, and other kinases, respectively. Pi3k‐Akt and Erk signaling pathways are indicated by gray frames. 
(b) Constructed global regulatory network. The arrows (from the top to the bottom layer) indicate phosphorylation of the quantitatively changed 
phosphopeptides by the responsible protein kinases. (c) Number of quantitative changed phosphopeptides inferred as substrates for the kinases on 
the signaling pathway. Red and blue bars indicate the number of phosphopeptides on only the pathways in Clusters 1 and 2, respectively; the green 
bar indicates the number of phosphopeptides on pathways in both clusters
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with the largest number of registered protein kinases. Moreover, 
the phosphoproteomic data in this study obtained with shotgun 
approach include missing KSRs and nonfunctional phosphory-
lation. We select the pathway in which IRpPs are concentrated 
using statistical over‐representation analysis to reduce the in-
fluence of missing and nonfunctional phosphorylation on the 
landscape of insulin action. Although KSR prediction can find 
novel pathways between the signaling pathway and cellular 
function, it cannot find novel cellular functions. In this study, 
we used KEGG pathways to provide prior knowledge of cellular 
functions because they clearly distinguish signaling and cellular 
functions. In addition to KEGG pathways, GO (Ashburner et al., 
2000) and pathway information included in reactome (Croft et 
al., 2014) are used to provide established pathway information. 
Depending on cellular function, the precision and completeness 
of prior knowledge may be quite different; it is possible that 
over‐representation may not have resulted in the original cellular 
function. Despite these limitations, we obtained novel molecu-
lar insight into how cells interpret insulin stimulation through 
the integration of cellular functions available in the databases 
mentioned above to the signaling identified by KSR prediction.

Since metabolism did not indicate significant over‐repre-
sentation in the pathway analysis, it is not included in the 
targeted cellular functions. However, metabolic regulation 
is one of the well‐known functions of insulin (Lizcano & 
Alessi, 2002; Saltiel & Kahn, 2001), and we have previously 
reconstructed a global regulatory network involved in metab-
olism (Yugi et al., 2014). We revealed the large contribution 
of Akt and Erk in regulating cellular functions via phosphor-
ylation in response to acute insulin action. We propose that 
these reconstruction methods be applied to explore cellular 
responses to other stimuli.

4 |  EXPERIMENTAL 
PROCEDURES

4.1 | Phosphoproteomic data
In this study, we used published datasets of the quantitative 
phosphoproteomic data of a time series of insulin stimulation 

of Fao cells (RRID:CVCL_0269, male) that we measured 
previously (Yugi et al., 2014). Rat hepatoma Fao cells were 
seeded at a density of 3 × 106 cells per dish on 6‐cm dishes 
(Corning) and cultured in RPMI 1640 supplemented with 
10% (v/v) fetal bovine serum at 37°C under 5% CO2 for 
2 days before deprivation of serum (starvation). The cells 
were washed twice with phosphate‐buffered saline (PBS) and 
starved for 16 hr in serum‐free medium including 0.01 nM 
insulin (Sigma‐Aldrich) and 10 nM dexamethasone (Wako), 
which increases the expression of gluconeogenesis genes such 
as G6pase and Pck1 (Lange et al., 1994). We continuously 
added 0.01 nM insulin before the stimulation, and 0.01 nM 
insulin was present throughout the experiments unless other-
wise specified to mimic in vivo basal secretion during fast-
ing (Polonsky et al., 1988). The medium was changed at 4 
and 2 hr before the stimulation. Cells were stimulated with 
1 nM insulin and collected at 0, 2, 5, 10, 30, 45 and 60 min 
after stimulation. Cell lysate digested with LysC and trypsin 
was subjected to Fe‐IMAC and iTRAQ labeling for the en-
richment of phosphopeptides and quantification by mass 
spectrometry. All samples were analyzed with a QSTAR 
Elite (AB Sciex) instrument equipped with a Paradigm MS4 
HPLC pump and HTC‐PAL autosampler (CTC Analytics 
AG). The peak lists were generated using Analyst Mascot.dll 
v1.6b27 (AB SCIEX). A MASCOT search was performed 
with the following parameter settings: trypsin as the enzyme 
used; the allowed number of missed cleavages as 2; iTRAQ 
label at the NH2‐terminus, Lys and carbamidomethylation 
of Cys as fixed modifications; oxidized Met, iTRAQ label 
on Tyr, pyroglutamination of NH2‐terminal Glu or Gln, and 
phosphorylation on Ser, Thr and Tyr as variable modifica-
tions; precursor mass tolerance as 100 ppm; and tolerance of 
MS/MS ions as 0.2 Da. Assigned rank 1 peptide sequences 
(MASCOT score >20) were extracted. Evaluation of phos-
phorylation sites was performed at a post‐MASCOT search 
with in‐house script.

4.2 | Identification of differential 
phosphorylation
Because the phosphoproteomic data consisted of two dif-
ferent time series from two separate experiments (0, 5, 10 
and 45 min and 2, 10, 30 and 60 min), some of the phospho-
peptides were identified and quantified in data from only 
one of the time series. Therefore, a fold change of phospho-
rylation intensity was calculated as a ratio of the phospho-
rylation intensity at each time point to the phosphorylation 
intensity at t = 0 or 2 min. A phosphopeptide with a phos-
phorylation intensity greater than a 1.5‐fold increase or less 
than a 0.67‐fold decrease at one or more time points was de-
fined as a quantitatively changed phosphopeptide. Proteins 
including one or more quantitatively changed phosphopep-
tides were defined as insulin‐responsive phosphoproteins 

T A B L E  2  Number of quantitatively changed phosphopeptides 
inferred as substrates for kinases on the signaling pathway

Kinase Cluster 1 Cluster 2 Both clusters Total

Pka 48 6 2 56

Pkc 28 15 7 50

Erk1/2 5 35 2 42

Akt 17 8 3 28

Mek1/2 1 5 8 14

Gsk3β 1 2 0 3

Total 100 71 22 193
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(IRpPs). The detailed procedure of identification of differ-
ential phosphorylation can be found in Yugi et al (Yugi et 
al., 2014).

4.3 | Construction of the cellular 
functional layer
We selected all rat pathways from the KEGG database 
for cellular functions with the following exceptions: (a) 
signaling pathways (43 pathways); (b) global pathways 
(rno01XXX) including Metabolic pathways (rno01100) 
(9 pathways); (c) disease‐related pathways (rno05XXX) 
(63 pathways); (d) pathways that work in specific tissues 
other than liver or are not regulated by insulin signaling in 
the liver (52 pathways); and (e) pathways that include the 
character string of “diabetes,” “NAFLD” or “Insulin resist-
ance”; in their names (8 pathways). The reasons why we 
excluded the above five kinds of pathways are as follows. 
The signaling pathways were excluded from cellular func-
tional pathways because these were analyzed in the previ-
ous study (Kawata et al., 2018). Global and disease‐related 
pathways were excluded because of their redundancy with 
other cellular functional pathways as subsets. To identify 
the cellular functions regulated by insulin stimulation, we 
performed over‐representation analysis of the IRpPs in 
the cellular functional pathways. The international protein 
index (IPI) (Kersey et al., 2004) IDs of phosphopeptides 
in the phosphoproteomic data were converted to KEGG 
gene ID using bioDBnet (Mudunuri, Che, Yi, & Stephens, 
2009) to correspond with the pathway information in the 
KEGG database. Over‐representation of the IRpPs for each 
pathway was determined using Fisher’s exact test with 
FDR using Storey’s procedure (Storey et al., 2004) (sig-
nificant over‐representation when FDR <0.1). The cellular 
functional pathways in which the IRpPs were significantly 
over‐represented were defined as the cellular functional 
layer.

4.4 | Inference of protein kinases for protein 
phosphorylation
We inferred KSRs for amino acid sequences in the proteins 
with quantitatively changed phosphopeptides using a stand‐
alone version of NetPhorest (Horn et al., 2014; Miller et al., 
2008) (http://netphorest.info/download/netphorest_human.
tsv.xz). NetPhorest inputs are rat protein sequences associ-
ated with the IPI in FASTA format (ftp://ftp.ebi.ac.uk/pub/
databases/IPI/last_release/current/ipi.RAT.fasta.gz). The 
outputs for NetPhorest are posterior probabilities of an amino 
acid residue being recognized by a protein kinase classifier 
(kinases with similar substrate recognition motifs). Among 
the candidate classifiers, we selected the classifier with the 
largest posterior probability value as the kinase classifier 

related to the amino acid sequence. A predicted KSR is rep-
resented as an edge between a kinase classifier as one node 
and a phosphorylation site of an IRpP phosphopeptide as the 
other node. We also extracted individual kinases within in 
each class from NetPhorest (view source: http://netphorest.
info/download.shtml) and defined these kinases as responsi-
ble protein kinases.

4.5 | Clustering the cellular functional 
pathways by the occurrence rates of 
responsible protein kinases
We performed hierarchical cluster analysis on the cellular 
functional pathways in the cellular functional layer using the 
occurrence rate of the predicted responsible protein kinases. 
The occurrence rate of a specific kinase classifier (i) in a spe-
cific pathway (j) was calculated as the rate of the number 
of quantitatively changed phosphopeptides having the kinase 
classifier i (including the responsible protein kinases) to the 
total number of quantitatively changed phosphopeptides in 
the pathway j. The sum of occurrence rates of the kinase 
classifiers in pathway j is 1. We performed the hierarchi-
cal clustering of the cellular functions pathways using the 
Euclidean distance to calculate the intracluster distances and 
using Ward’s method to calculate the intercluster distances 
(Ward, 1963).

4.6 | Generating motif logos
Motif logos of the quantitatively changed phosphopeptides 
included in each cellular functional pathway were gener-
ated using enoLOGOS (Workman et al., 2005; http://bio-
dev.hgen.pitt.edu/enologos/) with relative entropy as the 
logo plot method. These logos are based on the frequency of 
each amino acid residue within the sequences of the phos-
phopeptides included in each cellular functional pathway. 
Ranges of motifs were provided from −5 to +5 residues 
from phosphorylated sites. Statistical tests of amino acid 
composition at each position of the quantitatively changed 
phosphopeptides included in the cellular functional layer or 
in each cluster were performed using iceLogo (Colaert et 
al., 2009; http://iomics.ugent.be/icelogoserver/index.html) 
with percentage difference as the scoring system and a p 
value cutoff of 0.05. These logos are based on the statisti-
cal significance of frequency of each amino acid residue 
within the sequences of the phosphopeptides included in 
each cluster against the reference compositions. The Rattus 
norvegicus amino acid compositions from Swiss‐Prot and 
quantitatively changed phosphopeptides included in cellu-
lar functions were used as reference compositions for tests 
of quantitatively changed phosphopeptides included in the 
cellular functional layer and for tests of those included in 
each cluster.

http://netphorest.info/download/netphorest_human.tsv.xz
http://netphorest.info/download/netphorest_human.tsv.xz
ftp://ftp.ebi.ac.uk/pub/databases/IPI/last_release/current/ipi.RAT.fasta.gz
ftp://ftp.ebi.ac.uk/pub/databases/IPI/last_release/current/ipi.RAT.fasta.gz
http://netphorest.info/download.shtml
http://netphorest.info/download.shtml
http://biodev.hgen.pitt.edu/enologos/
http://biodev.hgen.pitt.edu/enologos/
http://iomics.ugent.be/icelogoserver/index.html
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